Refine Your Search

Topic

Search Results

Technical Paper

A Smart Measuring System for Vehicle Dynamics Testing

2020-04-14
2020-01-1066
A fast measurement of the car handling performance is highly desirable to easily compare and assess different car setup, e.g. tires size and supplier, suspension settings, etc. Instead of the expensive professional equipment normally used by car manufacturers for vehicle testing, the authors propose a low-cost solution that is nevertheless accurate enough for comparative evaluations. The paper presents a novel measuring system for vehicle dynamics analysis, which is based uniquely on the sensors embedded in a smartphone and therefore completely independent on the signals available through vehicle CAN bus. Data from tri-axial accelerometer, gyroscope, GPS and camera are jointly used to compute the typical quantities analyzed in vehicle dynamics applications.
Technical Paper

A Methodology to Investigate the Dynamic Characteristics of ESP and EHB Hydraulic Units

2006-04-03
2006-01-1281
The paper deals with the Hardware-In-the-Loop based methodology which was adopted to evaluate the dynamic characteristics of Electronic Stability Program (ESP) and Electro-Hydraulic Brake (EHB) components. Firstly, it permits the identification of the time delays due to the hardware of the actuation system. Secondly, the link between the hardware of the hydraulic unit and a vehicle model running in real time permits the objective evaluation of the performance induced by the single components of different hydraulic units in terms of vehicle dynamics. The paper suggests the main parameters and tests which can help the car manufacturer in evaluating ESP hydraulic units, without expensive road tests.
Technical Paper

A Methodology for Parameter Estimation of Nonlinear Single Track Models from Multibody Full Vehicle Simulation

2021-04-06
2021-01-0336
In vehicle dynamics, simple and fast vehicle models are required, especially in the framework of real-time simulations and autonomous driving software. Therefore, a trade-off between accuracy and simulation speed must be pursued by selecting the appropriate level of detail and the corresponding simplifying assumptions based on the specific purpose of the simulation. The aim of this study is to develop a methodology for map and parameter estimation from multibody simulation results, to be used for simplified vehicle modelling focused on handling performance. In this paper, maneuvers, algorithms and results of the parameter estimation are reported, together with their integration in single track models with increasing complexity and fidelity. The agreement between the multibody model, used as reference, and four single track models is analyzed and discussed through the evaluation of the correlation index.
Technical Paper

A Deep Learning based Virtual Sensor for Vehicle Sideslip Angle Estimation: Experimental Results

2018-04-03
2018-01-1089
Modern vehicles have several active systems on board such as the Electronic Stability Control. Many of these systems require knowledge of vehicle states such as sideslip angle and yaw rate for feedback control. Sideslip angle cannot be measured with the standard sensors present in a vehicle, but it can be measured by very expensive and large optical sensors. As a result, state observers have been used to estimate sideslip angle of vehicles. The current state of the art does not present an algorithm which can robustly estimate the sideslip angle for vehicles with all-wheel drive. A deep learning network based sideslip angle observer is presented in this article for robust estimation of vehicle sideslip angle. The observer takes in the inputs from all the on board sensors present in a vehicle and it gives out an estimate of the sideslip angle. The observer is tested extensively using data which are obtained from proving grounds in high tire-road friction coefficient conditions.
Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
X